RESEARCH

Chiral surfaces

Our group among the first to utilize chiral self-assembled monolayers (SAMs) for the preparation of chiral Nano surfaces for chiral resolution by crystallization. In a series of papers, my research group has shown that chiral SAM surfaces can be employed as resolving auxiliaries in the crystallization of the amino acids form solutions.

Publication

1. Dressler, D. H.; Hod, I.; Mastai, Y., Stabilization of alpha-L-glutamic acid on chiral thin films - A theoretical and experimental study. Journal of Crystal Growth 2008, 310 (7-9), 1718-1724.

2. Dressler, D. H.; Mastai, Y., Enantioselective crystallization of histidine on chiral self-assembled films of cysteine. Journal of Colloid and Interface Science 2007, 310 (2), 653-660.

3. Dressler, D. H.; Mastai, Y., Chiral crystallization of glutamic acid on self assembled films of cysteine. Chirality 2007, 19 (5), 358-365.

​4. Ejgenberg, M.; Mastai, Y., Conglomerate crystallization on self-assembled monolayers. Chemical Communications 2011, 47 (44), 12161-12163.

​5. Mastai, Y., Enantioselective crystallization on nonchiral surfaces. Chemical Society Reviews 2009, 38 (3), 772-780.

66.PNG

Chiral mesoporous silica

and carbon

Our group contributed significantly to the development of chiral mesoporous materials Especially basic on silica and carbon materials.

Publication​

1. Fuchs, I.; Fechler, N.; Antonietti, M.; Mastai, Y., Enantioselective Nanoporous Carbon Based on Chiral Ionic Liquids. Angewandte Chemie-International Edition 2016, 55 (1), 408-412.

2. Gabashvili, A.; Medina, D. D.; Gedanken, A.; Mastai, Y., Templating mesoporous silica with chiral block copolymers and its application for enantioselective separation. Journal of Physical Chemistry B 2007, 111 (38), 11105-11110.

3. Paik, P.; Gedanken, A.; Mastai, Y., Chiral-mesoporous-polypyrrole nanoparticles: Its chiral recognition abilities and use in enantioselective separation. Journal of Materials Chemistry 2010, 20 (20), 4085-4093.

4. Paik, P.; Gedanken, A.; Mastai, Y., Chiral separation abilities: Aspartic acid block copolymer-imprinted mesoporous silica. Microporous and Mesoporous Materials 2010, 129 (1-2), 82-89.

5. Perovic, M.; Aloni, S. S.; Mastai, Y.; Oschatz, M., Mesoporous carbon materials with enantioselective surface obtained by nanocasting for selective adsorption of chiral molecules from solution and the gas phase. Carbon 2020, 170, 550-557.

6. Perovic, M.; Aloni, S. S.; Zhang, W.; Mastai, Y.; Antonietti, M.; Oschatz, M., Toward Efficient Synthesis of Porous All-Carbon-Based Nanocomposites for Enantiospecific Separation. Acs Applied Materials & Interfaces 2021, 13 (20), 24228-24237.

Science
 

Chiral surfaces

chiral surfaces.jpg

Chiral polymeric nanoparticles

Chiral polymeric nanoparticles

Chiral mesoporous silica and carbon

Chiral mesoporous silica and carbo

Development of new chiral analytical methods

Development of new chiral analytical methods

Chiral inorganic nanostructures

Chiral inorganic nanostructures

Chiral inorganic nanostructures

Recently we presented an innovative new type of chiral surfaces based on the combination of chiral monolayers (SAM) coated with ceramic nanolayers that preserve the enantioselectivity nature of the chiral SAM and enable its protection.  These surfaces can lead to new class of chiral nano-surfaces with improved characteristics that are necessary for any chiral application.

Publication

1. Ghosh, K. B.; Zhang, W.; Tassinari, F.; Mastai, Y.; Lidor-Shaley, O.; Naaman, R.; Moellers, P.; Nuerenberg, D.; Zacharias, H.; Wei, J.; Wierzbinski, E.; Waldeck, D. H., Controlling Chemical Selectivity in Electrocatalysis with Chiral CuO-Coated Electrodes. Journal of Physical Chemistry C 2019, 123 (5), 3024-3031.

2. Levi, G.; Scolnik, Y.; Mastai, Y., Imprinting Chirality in Silica Nanotubes by N-Stearoyl-serine Template. Acs Applied Materials & Interfaces 2016, 8 (35), 23356-23361.

3. Lidor-shalev, O.; Carmiel, Y.; Pliatsikas, N.; Patsalas, P.; Mastai, Y., Atomic layer deposition of metal-oxide thin films on cellulose fibers. Journal of Coordination Chemistry 2018, 71 (11-13), 2043-2052.

4. Lidor-Shalev, O.; Pliatsikas, N.; Carmiel, Y.; Patsalas, P.; Mastai, Y., Chiral Metal-Oxide Nanofilms by Cellulose Template Using Atomic Layer Deposition Process. Acs Nano 2017, 11 (5), 4753-4759.

5. Lidor-Shalev, O.; Yemini, R.; Leifer, N.; Nanda, R.; Tibi, A.; Perelshtein, I.; Avraham, E. S.; Mastai, Y.; Noked, M., Growth of Hybrid Inorganic/Organic Chiral Thin Films by Sequenced Vapor Deposition. Acs Nano 2019, 13 (9), 10397-10404.

 

Chiral polymeric nanoparticles

Our research group focus on the synthesis characterization and use of chiral polymeric nanoparticles and microspheres. We have shown that nanoparticles can act as chiral auxiliaries and can be utilized for enantioselective crystallization and other chiral application.

Publication

​​1.  Abuaf, M.; Mastai, Y., Synthesis of Multi Amino Acid Chiral Polymeric Microparticles for Enantioselective Chemistry. Macromolecular Chemistry and Physics 2020, 221 (24).

2. Adler, S. R.; Mastai, Y., Chiral polymeric nanoparticles for aldol reaction. Reactive & Functional Polymers 2015, 96, 1-4.

3. Medina, D. D.; Goldshtein, J.; Margel, S.; Mastai, Y., Enantioselective crystallization on chiral polymeric microspheres. Advanced Functional Materials 2007, 17 (6), 944-950.

4. Medina, D. D.; Mastai, Y., Chiral Polymers and Polymeric Particles for Enantioselective Crystallization. Israel Journal of Chemistry 2018, 58 (12), 1330-1337.

5. Menahem, T.; Mastai, Y., Chiral soluble polymers and microspheres for enantioselective crystallization. Journal of Polymer Science Part a-Polymer Chemistry 2006, 44 (9), 3009-3017.

Science
 

Development of new chiral analytical methods

Our group we pioneered the development of new chiral analytical methods e.g. optical scanning microscopy, isothermal titration calorimetry (ITC) and Low-frequency Raman spectroscopy for the determination of chirality at nanoscale.

Publication​​

1. Aviv, H.; Nemtsov, I.; Mastai, Y.; Tischler, Y. R., Characterization of Crystal Chirality in Amino Acids Using Low Frequency Raman Spectroscopy. Journal of Physical Chemistry A 2017, 121 (41), 7882-7888.

2. Dimova, R.; Lipowsky, R.; Mastai, Y.; Antonietti, M., Binding of polymers to calcite crystals in water: Characterization by isothermal titration calorimetry. Langmuir 2003, 19 (15), 6097-6103.

3. Nemtsov, I.; Mastai, Y.; Tischler, Y. R.; Aviv, H., Chiral Purity of Crystals Using Low-Frequency Raman Spectroscopy. Chemphyschem 2018, 19 (22), 3116-3121.

4.  Shval, A.; Mastai, Y., Isothermal titration calorimetry as a new tool to investigate chiral interactions at crystal surfaces. Chemical Communications 2011, 47 (20), 5735-5737.

5.  Werber, L.; Mastai, Y., Isothermal titration calorimetry for chiral chemistry. Chirality 2018, 30 (5), 619-631.

6. Werber, L.; Preiss, L. C.; Landfester, K.; Munoz-Espi, R.; Mastai, Y., Isothermal Titration Calorimetry of Chiral Polymeric Nanoparticles. Chirality 2015, 27 (9), 613-618.

 
55.PNG
Science
Microscope
55.PNG